首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6919篇
  免费   199篇
  国内免费   1140篇
化学   7034篇
晶体学   94篇
力学   67篇
综合类   33篇
数学   15篇
物理学   1015篇
  2024年   4篇
  2023年   314篇
  2022年   107篇
  2021年   135篇
  2020年   170篇
  2019年   158篇
  2018年   167篇
  2017年   193篇
  2016年   197篇
  2015年   159篇
  2014年   242篇
  2013年   591篇
  2012年   470篇
  2011年   395篇
  2010年   311篇
  2009年   414篇
  2008年   405篇
  2007年   475篇
  2006年   430篇
  2005年   385篇
  2004年   385篇
  2003年   283篇
  2002年   217篇
  2001年   190篇
  2000年   167篇
  1999年   137篇
  1998年   120篇
  1997年   115篇
  1996年   115篇
  1995年   121篇
  1994年   110篇
  1993年   110篇
  1992年   91篇
  1991年   59篇
  1990年   42篇
  1989年   40篇
  1988年   37篇
  1987年   15篇
  1986年   31篇
  1985年   15篇
  1984年   13篇
  1983年   11篇
  1982年   13篇
  1981年   16篇
  1980年   22篇
  1979年   19篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1975年   17篇
排序方式: 共有8258条查询结果,搜索用时 15 毫秒
41.
The emergence of two-dimensional conjugated metal–organic frameworks (2D c-MOFs) with pronounced electrical properties (e.g., high conductivity) has provided a novel platform for efficient energy storage, sensing, and electrocatalysis. Nevertheless, the limited availability of suitable ligands restricts the number of available types of 2D c-MOFs, especially those with large pore apertures and high surface areas are rare. Herein, we develop two new 2D c-MOFs (HIOTP-M, M=Ni, Cu) employing a large p-π conjugated ligand of hexaamino-triphenyleno[2,3-b:6,7-b′:10,11-b′′]tris[1,4]benzodioxin (HAOTP). Among the reported 2D c-MOFs, HIOTP-Ni exhibits the largest pore size of 3.3 nm and one of the highest surface areas (up to 1300 m2 g−1). As an exemplary application, HIOTP-Ni has been used as a chemiresistive sensing material and displays high selective response (405 %) and a rapid response (1.69 min) towards 10 ppm NO2 gas. This work demonstrates significant correlation linking the pore aperture of 2D c-MOFs to their sensing performance.  相似文献   
42.
The bimetallic, decanuclear Ni3Ga7-cluster of the formula [Ni3(GaTMP)3(μ2-GaTMP)3(μ3-GaTMP)] ( 1 , TMP=2,2,6,6-tetramethylpiperidinyl) reacts reversibly with dihydrogen under the formation of a series of (poly-)hydride clusters 2 . Low-temperature 2D NMR experiments at −80 °C show that 2 consist of a mixture of a di- ( 2Di ), tetra- ( 2Tetra ) and hexahydride species ( 2Hexa ). The structures of 2Di and 2Tetra are assessed by a combination of 2D NMR spectroscopy and DFT calculations. The cooperation of both metals is essential for the high hydrogen uptake of the cluster. Polyhydrides 2 are catalytically active in the semihydrogenation of 4-octyne to 4-octene with good selectivity. The example is the first of its kind and conceptually relates properties of molecular, atom-precise transition metal/main group metal clusters to the respective solid-state phase in catalysis.  相似文献   
43.
Constructing efficient artificial solid electrolyte interface (SEI) film is extremely vital for the practical application of lithium metal batteries. Herein, a dense artificial SEI film, in which lithiophilic Zn/LixZny are uniformly but nonconsecutively dispersed in the consecutive Li+-conductors of LixSiOy, Li2O and LiOH, is constructed via the in situ reaction of layered zinc silicate nanosheets and Li. The consecutive Li+-conductors can promote the desolvation process of solvated-Li+ and regulate the transfer of lithium ions. The nonconsecutive lithiophilic metals are polarized by the internal electric field to boost the transfer of lithium ions, and lower the nucleation barrier. Therefore, a low polarization of ≈50 mV for 750 h at 2.0 mA cm−2 in symmetric cells, and a high capacity retention of 99.2 % in full cells with a high lithium iron phosphate areal loading of ≈13 mg cm−2 are achieved. This work offers new sights to develop advanced alkali metal anodes for efficient energy storage.  相似文献   
44.
Immobilization of porphyrin complexes into crystalline metal–organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from −0.6 V to −1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.  相似文献   
45.
Two-dimensional metal–organic frameworks (2D MOFs) can be used as the cathodes for high-performance zinc-ion battery due to their large one-dimensional channels. However, the conventionally poor electrical conductivity and low structural stability hinder their advances. Herein, we report an alternately stacked MOF/MX heterostructure, exhibiting the 2D sandwich-like structure with abundant active sites, improved electrical conductivity and exceptional structural stability. Ex situ characterizations and theoretical calculations reveal a reversible intercalation mechanism of zinc ions and high electrical conductivity in the 2D heterostructure. Electrochemical tests confirm excellent Zn2+ migration kinetics and ideal pseudocapacitive behaviors. As a consequence, Cu-HHTP/MX shows a superior rate performance (260.1 mAh g−1 at 0.1 A g−1 and 173.1 mAh g−1 at 4 A g−1) and long-term cycling stability of 92.5 % capacity retention over 1000 cycles at 4 A g−1.  相似文献   
46.
Constructing multifunctional interphases to suppress the rampant Zn dendrite growth and detrimental side reactions is crucial for Zn anodes. Herein, a phytic acid (PA)-ZnAl coordination compound is demonstrated as a versatile interphase layer to stabilize Zn anodes. The zincophilic PA-ZnAl layer can manipulate Zn2+ flux and promote rapid desolvation kinetics, ensuring the uniform Zn deposition with dendrite-free morphology. Moreover, the robust PA-ZnAl protective layer can effectively inhibit the hydrogen evolution reaction and formation of byproducts, further contributing to the reversible Zn plating/stripping with high Coulombic efficiency. As a result, the Zn@PA-ZnAl electrode shows a lower Zn nucleation overpotential and higher Zn2+ transference number compared with bare Zn. The Zn@PA-ZnAl symmetric cell exhibits a prolonged lifespan of 650 h tested at 5 mA cm−2 and 5 mAh cm−2. Furthermore, the assembled Zn battery full cell based on this Zn@PA-ZnAl anode also delivers decent cycling stability even under harsh conditions.  相似文献   
47.
One-dimensional fiber architecture serves as an excellent catalyst support. The orderly arrangement of active materials on such a fiber substrate can enhance catalytic performance by exposing more active sites and facilitating mass diffusion; however, this remains a challenge. We developed an interfacial assembly strategy for the orderly distribution of metal nanocrystals on different fiber substrates to optimize their electrocatalytic performance. Using electrochemical nitrate reduction reaction (NO3RR) as a representative reaction, the iron-based nanofibers (Fe/NFs) assembly structure achieved an excellent nitrate removal capacity of 2317 mg N/g Fe and N2 selectivity up to 97.2 %. This strategy could promote the rational design and synthesis of fiber-based electrocatalysts.  相似文献   
48.
Core-shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high-quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential-limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1 mA cm−2 at 1.23 VRHE. This study introduces a new approach for constructing core–shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine.  相似文献   
49.
All-solid-state lithium metal batteries (LMBs) are considered as the promising higher-energy and improved-safety energy-storage systems. Nevertheless, the electrolyte-electrodes interfacial issues due to the limited solid physical contact lead to discontinuous interfacial charge transport and large interfacial resistance, thereby suffering from unsatisfactory electrochemical performance. Herein, we construct an integrated cathode/polymer electrolyte for all-solid-state LMBs under the action of polymer chains exchange and recombination originating from multiple dynamic bonds in our well-designed dynamic supramolecular ionic conductive elastomers (DSICE) molecular structure. The DSICE acts as polymer electrolytes with excellent electrochemical performance and mechanical properties, achieving the ultrathin pure polymer electrolyte thickness (12 μm). Notably, the DSICE also functions as lithium iron phosphate (LiFePO4, LFP) cathode binders with enhanced adhesive capability. Such well-constructed Li|DSICE|LFP-DSICE cells generate delicate electrolyte-electrodes interfacial contact at the molecular level, providing continuous Li+ transport pathways and promoting uniform Li+ deposition, further delivering superior long-term charge/discharge stability (>600 cycles, Coulombic efficiency, >99.8 %) and high capacity retention (80 % after 400 cycles). More practically, the Li|DSICE|LFP-DSICE pouch cells show stable electrochemical performance, excellent flexibility and safety under abusive tests.  相似文献   
50.
In the pursuit of long-term stability for oxygen evolution reaction (OER) in seawater, retaining the intrinsic catalytic activity is essential but has remained challenging. Herein, we developed a NixCryO electrocatalyst that manifested exceptional OER stability in alkaline condition while improving the activity over time by dynamic self-restructuring. In 1 M KOH, NixCryO required overpotentials of only 270 and 320 mV to achieve current densities of 100 and 500 mA cm−2, respectively, with excellent long-term stability exceeding 475 h at 100 mA cm−2 and 280 h at 500 mA cm−2. The combination of electrochemical measurements and in situ studies revealed that leaching and redistribution of Cr during the prolonged electrolysis resulted in increased electrochemically active surface area. This eventually enhanced the catalyst porosity and improved OER activity. NixCryO was further applied in real seawater from the Red Sea (without purification, 1 M KOH added), envisaging that the dynamically evolving porosity can offset the adverse active site-blocking effect posed by the seawater impurities. Remarkably, NixCryO exhibited stable operation for 2000, 275 and 100 h in seawater at 10, 100 and 500 mA cm−2, respectively. The proposed catalyst and the mechanistic insights represented a step towards realization of non-noble metal-based direct seawater splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号